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We argue that the universality and statistical nature of the deep-ocean internal 
gravity-wave spectrum results from a strange attractor in the driven, dissipative 
internal-wave field. To explore this we construct a model which injects energy into 
the oceanic surface a t  a constant rate. A two-dimensional version of the model is 
explored analytically and numerically. For the numerical work we restrict our 
considerations to a few of the longest-wavelength modes. This few-mode system 
exhibits bifurcation into limit cycles, period doubling of the limit cycles, and chaotic, 
non-periodic behaviour associated with a strange attractor. In  an appendix we 
present some discussion of the three-dimensional version of the model. 

1. Introduction 
The universality of the empirical oceanic internal-wave spectrum (Garrett & Munk 

1975, 1979) is a striking feature of internal-wave dynamics. Since the sources €or 
energy influx into the internal-wave field (Thorpe 1975) are numerous and irregularly 
placed in time as well as space, it  appears unlikely that a study of sources, however 
much they may reveal about ocean dynamics (Wunsch 1975), will illuminate the 
universality question. 

Various mechanisms of energy dissipation and energy redistribution have been 
reviewed critically by Holloway (1980). He concludes that wave-wave interactions 
are not weak and that no firm clues to  the origin of the universal spectrum have been 
uncovered. 

In this article we begin the exploration of another path which leads to universal 
behaviour in dynamical systems like oceanic internal waves. We begin with the 
observation that the response of the internal-wave system (in the deep ocean) to 
changes in energy sources is at most a transient which is lost as the system settles 
back to its universal state. Secondly, we note that, although much of the internal- 
wave field dissipates negligible energy, the energy input by sources must, of course, 
be dissipated by fluid motions on scales < 5 m. 

Viewing a change in energy sources as equivalent to a change in ' initial ' conditions, 
we see that the asymptotic state to which the internal-wave field goes is rather 
independent of initial conditions. Dissipative systems which approach the same state 
for a large set of initial conditions are said to have an asymptotic attractor or invariant 
distribution (Eckmann 1981). The motion of a given phase-space point (internal-wave 
field Fourier mode in the present context) will be quite complicated on the attractor. 
Indeed the details of the orbit will be very sensitive to initial conditions. The 
distribution of points on the attractor, however, is the same for all initial points in 
its basin of attraction, 
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The path we wish to begin pursuing here rests on the notion that internal-wave 
dynamics has an asymptotic attractor with a wide basin of attraction, so that a large 
variety of initial or perturbed states of the ocean relaxes rather rapidly to this 
universal asymptotic state. If we have N modes of the internal-wave field of dynamic 
importance, the state of the system is labelled a t  any time by an N-vector 
x = (xl, x2, . . ., xN). If we know DA(x) - the asymptotic distribution - then the distri- 
bution of any phase function F(x), such as the energy, is F(x)D,(x) when the 
asymptotic state is reached. 

Until now we have been addressing properties of the deterministic evolution 
equations which govern the internal-wave field. Yet it is an aspect of the empirical 
data that it is appropriate to treat internal-wave motion as statistical. These two views 
are joined when we inquire into the structures available for DA(x). Since the system 
is dissipative, any volume of phase space shrinks to zero in going from the initial state 
to the asymptotic state. We can state this differently by saying that the attractor 
has dimension < N, so has phase-space volume zero. 

The simplest possible attractor is a fixed point, which has dimension zero. As the 
parameters of the system (magnitude of surface wind stress, strength of mean 
currents, etc.) change, so may the topology of the attractor. The next most 
complicated attractor is a limit cycle in which orbits settle down to a closed curve 
in x-space. These have dimension one. Motion on a torus in M < N dimensions is the 
natural generalization of the limit cycle; such Aows have dimension M and are 
quasi-periodic. About a decade ago i t  was pointed out (Ruelle & Takens 1971) that 
there is another possibility for the topology of the attractor. It is possible that, after 
several (3 or 4) bifurcations from limit cycles, the attractor will become non-periodic. 
The asymptotic orbit will not be a closed curve in x-space, but will fill some number 
of integer dimensions plus a Cantor set of points with fractional dimension. This is 
aptly called a strange attractor. (Good introductory expositions of this idea are in 
Lanford (1980) and Ott (1981).) Such behaviour had been observed in earlier work 
by Lorenz (1963) in the context of BBnard convection. Also there is rather clean 
experimental evidence that this route to non-periodic motion does occur (Fenster- 
macher, Swinney & Gollub 1979; Libchaber & Maurer 1981). 

When non-periodic motion on a strange attractor does set in, a spectral analysis 
of the orbit will reveal only broadband structure and no sharp lines from periodic 
or quasi-periodic motion. Since the motion is non-periodic i t  may properly be termed 
chaotic or turbulent, though it is clear it cannot correctly be called stochastic, 
statistical, or random in the strictest sense of those terms. If one subjects orbits on 
a strange attractor to tests for a random function of time, i t  will pass them to high 
numerical resolution. One may then call the motion pseudorandom, and in an oper- 
ational sense treat it as statistical. 

In this paper we study a model of forced internal-wave dynamics in which the 
energy sources are taken to be a t  the oceanic surface and are represented by a 
phenomenological scalar field, E ( x ,  t ) ,  which we term the energy-transfer Jield. I t  is 
taken to satisfy an advection diffusion equation 

( g + ~ * V , ) E ( x , t )  = K V ~ E ( X , ~ ) ,  

where u ( x ,  t )  is the fluid velocity field and K is a phenomenological energy diffusivity. 
The energy-transfer field also will couple into the Navier-Stokes equation for u. 
Energy input will be represented by a fixed value of E ,  call i t  E,, at the ocean surface 
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and a zero value at the ocean bottom. As E, is varied the internal-wave field is more 
or less strongly driven from one asymptotic state to another. We wish to examine 
the variety of asymptotic states available to the stratified fluid. 

In  a loose way one can think of our model as an inverse sort of convection problem ; 
namely, we have a stratified fluid ‘heated ’ from above. Such a situation is not subject 
to convective instability as occurs in ordinary BBnard convection, but instead is prone 
to the Kelvin-Helmholtz instability (Chandrasekhar 1961 ; Bretherton 1969) which 
occurs as the fluid is driven to strong vertical shears which overcome the stability 
of buoyancy effects due to the stratification. When the quantity 

where n is the buoyancy frequency, u, is the x-component of u, and the stratification 
is in the z-direction, becomes greater than 2, one expects instability. The conventional 
Richardson number is and there is quite striking evidence that internal-wave 
modes withp > 2 (Ri < a) are absent in the oceanic internal-wave field (Eriksen 1978). 
In our scaling of the dynamical equations p will become a measure of the strength 
with which the energy-transfer field couples to the velocity and density fields and 
the nonlinear coupling strength of modes of the linear system. It is the instabilities 
of dynamical systems which allow the topology of strange attractors to  emerge, so 
our study here will focus on the qualitative features of the internal-wave field as p 
varies. 

Our eventual model is, of course, an abstraction even of the simplified situation 
of ‘heating’ which we have described above. The three most bold approximations 
we make are ( 1 )  the buoyancy frequency is taken constant; ( 2 )  the ocean is taken 
to be two-dimensional - one horizontal direction is suppressed; (3) we make a mode 
expansion of the full partial differential equations to reduce them to a few ordinary 
differential equations. Our physical idea here is that for small, but non-trivial, forcing 
the longest-wavelength modes will both be more dominant and more prone to 
instability. Small-wavelength modes are also damped more strongly by viscosity. All 
of our approximations are open to examination by removing them. Variable n(z) 
complicates the algebra and changes the details of mode couplings. Three space 
dimensions instead of two can be handled, but we do not examine this difference in 
our initial exploration here. Finally one can always augment the number of modes 
retained. 

In $2 we discuss our model in more detail. We exhibit the scalings used and derive 
the modal equations. In $ 3  we study the simplest mode truncation of our system. 
It involves 5 modes. The five-mode system shows all the features of bifurcation to 
limit cycles and strange attractors indicated before. Our numerical work indicates 
that the route to chaos taken by the five-mode system could well be that of period 
doubling, which is not uncommon for low-order systems of ordinary differential 
equations. However, both in response to questions raised by one of the referees and 
the very helpful suggestions of E. Ott and C. Grebogi, I wish to draw the readers’ 
attention to the papers of Kuramoto & Koga (1982) and of Lyubimov & Zaks (1983) 
in which it is noted that chaos can result from a sequence of ‘repeated splitting(s) 
and recombination(s) of closed orbits ’. The qualitative features of the phase portraits 
and return maps in these papers are much like those in the present work. We have 
not been able to verify that the phenomena seen by these authors is what we are 
observing here. The most straightforward interpretation of our results from a 
dynamical-systems point of view is that we are seeing period doubling. The various 
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power spectra we present strongly support this. In  all there is here a bit of a puzzle, 
which is not resolved in the present work, but certainly deserves contemplation. 

Most of the work presented here is numerical, though some of the analysis of the 
instability of the fixed point in its transition to a limit cycle is analytic and is used 
as a quantitative support of the features of our numerical solutions. We present orbits 
and power spectra for an interesting range of p. Section 4 contains a discussion of 
the work in the paper and indications of future routes to investigate. 

2. Model of a forced stratified fluid 

Phillips 1977) for coupled velocity u(x ,  t )  and density p(x ,  t )  fields: 
Our starting point is the usual Boussinesq approximation (Chandrasekhar 1961 ; 

a 1 PS - u + ( u . V ) u  = - -Vp-- - -++xf+vV2u,  
at Po Po 

divu = 0, (2) 

where p = p(x3)  +p l (x ,  t ) ,  n(x3) is the usual buoyancy frequency, p is the pressure, 
g the gravitational acceleration, 2 a unit vector in the 3-direction (taken upward), 
f the Coriolis parameter (f = @,f = 2winertial sin (latitude)), and v is the kinematic 
viscosity. 

To these familiar equations we wish to add an energy source which will drive the 
motion of internal waves. We accomplish this by introducing a scalar energy-transfer 
field E ( x ,  t ) ,  which is taken to provide a force in the 3-direction in the momentum 
equation (1) and satisfy its own advection4iffusion equation 

( $ + u * V ) E ( x , t )  = K V ~ E ( Z , ~ ) ,  (4) 

where K is the phenomenological rate a t  which the energy-transfer amplitude is 
dissipated. 

In  the momentum equation we add to the right-hand side a forcing term 

-P?E(x, t ) ,  (5) 

where P is another phenomenological parameter but of no real significance as it can 
be scaled away since (4) is homogeneous in E(x ,  t ) .  This term is supposed to represent 
the result of a more detailed calculation of the way energy is transferred into the 
oceanic depths by surface mechanisms. A model calculation of this sort is the work 
of Watson, West & Cohen (1976), and such a calculation would yield a value for P. 

One of the referees has quite properly raised the issue of the relation of the model 
we have set up in (1)-(4) to the more conventional formulation as found, for example, 
in the monograph of Pedlosky (1979). The particular difference is in the ‘energy’ 
equation (4), which is usually replaced by a ‘density diffusion’. Pedlosky notes that 
this is just the heat or energy equation with a particular linear relationship between 
the temperature and the density. Here, in the internal-wave problem, density is a 
dynamical degree of freedom satisfying its own advective evolution equation (3). Our 
field E ( x ,  t )  is really no more than a representation of the heat equation without the 
identification of E with temperature, and the subsequent statement of an equation 
of state connecting density with temperature. With the three equations (1)-(3) we 
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have five evolution equations for five fields (three velocity, one density and one 
pressure). I n  themselves they are now closed. I n  order to drive this dissipative system, 
we must put energy in either through boundary conditions, say on the velocity a t  
the surface, or though another field, as we have done. A more realistic model would 
have the internal-wave field driven, say, by shears in the large-scale quasi-geostrophic 
flow. We will explore such complicated models in future work, but have chosen to 
remain with the simplistic replacement of the usual energy equation to bring out the 
other issues raised in this paper. 

We require the field E ( x ,  t )  to be a fixed constant value E,  a t  the surface, x, = 0, 
and zero a t  the bottom x, = - D. This represents energy forcing a t  the surface. Just  
as we may split p(x,t) into the background stratification p(x3) and the density 
variations pl(x, t ) ,  so we may split E ( x ,  t )  as: 

where the first term satisfies the surface and bottom boundary conditions, as well 
as the linearized version of our equations, while E ( x ,  t )  is the energy-transfer variation 
about the energy conduction Eo( 1 + x3/D).  

A discussion of the three-dimensional version of our model will be found in the 
appendix. Here we restrict ourselves to  two dimensions (x l ,  2,). Introduce a stream 
function @(x,, x,, t )  in the usual fashion 

to guarantee divu = 0. (8) 

The equations of motion for the three independent fields V2@, El and p1 are derived 
from ( l ) ,  (3) and (4): 

(& V v 2 )  v2+ =  BE^) a 9P1 + J(+, v2 $1, 
ax, Po 

9 ax1 
$J1+-- n2po a@ + J(@,p,) = 0, 
a 

('-.v2) E,+ J(+, E,) = E 3-, a+ 
D axl 

where 

(9) 

We now turn our attention to  a constant-n ocean, so the natural timescale is n-l. 
The natural lengthscale is D ;  so we are ignoring lengthscales for the variation of n. 
With these dimensional quantities we scale our equations by the rules 

14 

(17) 
Y L M  135 
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The momentum equation suggests that  the choice 

BE, = n2Dp (18) 

is consistent with the interpretation of p as the ratio of horizontal velocity shear to 
buoyancy frequency. These scalings yield 

(19) 
a a 
- Vz$ - r1V4$ = 
at (p, + El) +pJ($, V2 @), 

where I'l = v/hD2 and r, = K/nD2. The role o f p  as the strength of the nonlinearities 
is made explicit by these rescalings. 

The trivial solution to (19)-(21), $ = p1 = El = 0, represents the background state 
where the density is p ,  energy is conducted from the surface into the ocean, and there 
is no fluid motion. To study the stability of this state we take the fields to be in a 
particular Fourier mode 

$(x,z,t) = $sinxyzsin--eAt, (22) 
xmx 

L 

(23) 
xmx 

L 
pl(x,z,t) =pl  sinnqzcos-eAt, 

(24) 
xmx 

L 
El(x, z , t )  = Elsinxy~cos--eeht. 

The particular choice of sines and cosines comes from the boundary conditions 
u3 = p1 = El = 0 at x = 0, - 1 and u1 = 0 at the sides of the ocean, taken to be a t  
x =  f L .  

The linear terms of (19)-(21) lead to 

(25) 
-&,(A +r ,k;rn)  kx kx 

A 0  
0 A + r 2 k ; ,  

where 

To have non-zero amplitudes we require 

kim h3 + A2k;,(rl  + f , )  + A(Tlr, k:m + k:( 1 -p ) )  + r, k im kz  = 0, (27 1 
and the variations about $ = p 1  = El = 0 are stable when (27) has no roots with 
positive real part. 

This equation for A has one real negative solution as long as r, k;, k: > 0. 
Assuming that to be true, we seek a solution with Re A, = 0. This occurs when 
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The other solution of (27) is - k;,(T, + r2) at this point; namely, that  eigenmotion 
is stable. By writing h = i Im A, + 6, we find that 6 < 0, than is the $ = p1 = E, = 0 
solution is stable, when 

and unstable for p > pc(q, m).  I n  other words, if we set p, r, and r,, then all modes 
with horizontal wavenumber x m / L  and vertical wavenumber nq such that 
pc(q, m )  < p are unstable. 

This instability is that of the standard Hopf bifurcation (Iooss & Joseph 1981), 
where a complex-conjugate pair of eigenvalues of a linear stability matrix cross the 
imaginary axis. Whether a limit cycle emerges as these eigenvalues acquire a positive 
real part depends in detail on the structure of the nonlinearities. The numerical work 
presented below indicates that  a normal Hopf bifurcation occurs at pc and that a 
limit cycle of amplitude (p-pc)i grows out of the fixed point. At pc the frequency 
of the limit-cycle oscillations is 

where 

m2 
q2L2 + m2 ’ 

- - 

which is the frequency of the familiar linear internal-wave eigenmode measured in 
time units scaled by n.  

The form of pc(q, m) in (29) shows that, as p increases beyond pc, modes become 
unstable one at a time and that i t  is the low-q, low-m modes which are most prone 
to instability. So we observe that i t  is the longest-wavelength modes which first 
contribute to  interesting structure as the internal-wave field is driven more and more 
strongly. This suggests that, for moderate values of p, a few-mode approximation to  
the full partial differential equations will provide a good qualitative understanding 
of the behaviour of the full system. Asp becomes larger, more and more modes become 
important. 

We turn now to a few-mode approximation t o  the two-dimensional internal-wave 
equations. Expand $, p1 and E, in eigenmodes as 

The boundary conditions a t  z = 0, - 1 and x = & L along with the reality of $, p1 
and El result in the conditions 

(34) 

(35) 

- - $:, m - $-q, - m ,  $q, m - - $-q, m = - $q,  -m 9 

(P, c):, m = - (P,  c l -q ,  -m7 (P, c ) q ,  m = -. (P, c ) - q ,  m = (P,  E)q, - m .  

14-2 
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From the partial differential equations for $, p1 and El we derive the coupled ordinary 
differential equations for the modal amplitudes : 

(37) 

This infinite set of coupled equations is equivalent to the original equations for $, 
p1 and El. We proceed by retaining only a few modes with small wavenumbers. In  
addition to the linear stability argument given above we have two arguments for this. 
(1) For some range of driving strength p only the lowest-wavenumber modes will be 
substantially excited ; higher wavenumbers require larger kinetic energy. (2) Since 
dissipation is proportional to rl ki ,  m ,  modes with larger wavenumbers will be more 
rapidly destroyed. So the energy in larger kqm will not have had time to circulate 
before it disappears into a dissipative sink. As p increases, more modes will become 
required for an accurate description of the system. 

In  the remainder of this paper we deal with the baldest truncation of our coupled 
equations. The smallest-wavenumber modes that give rise to nonlinear coupling are 
five: q511, pll, ell and pzo and eZO. $lo and $ol are identically zero by (32), as are pol 
and eol. The modes e10 and plo are constants to this order. Our five-mode system 
satisfies 

d x 2px2 
g l I + ~ ( b l l  = ~ P Z O 4 1 1 ,  

d 4pn2 
p o =  -~ L P11411, 

3. Analysis of the five-mode system 
We begin with the equations for pzo and pll : 

By making the change of variables 

(39) 

1 
P20 + d 2  Pzo +- 2 

2xP 
P11 -+ P11, (44) 
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d 4 2  2pn2 
ZPll = + L PZ0@11> 

which means 

so we write pll = --WsinO, pzo= -Rcose, 

pi”1 +p& = R2 = constant ; 

d K 
~ @ l l + a @ l l  = ---((sll--Wsin8), 

e l  L 
which leads to 

d 2 4 2 , ~ ~ ~  -0 = 
dt 

where u = r l k f l ,  y = r , k f l  and y1 = r,k;,. By making the rescalings 

L $11, 

La 
Qi, 

@ll = 2 4 2  K2p 

- k:l L2a2 
R =  R, 

2 4 2  K3p 

t = s/a,  

we may cast our equations into the more manageable form 

dQi 
- = -Qii-Ell-RsinO, 
ds 

d 
a 

d Yl - E,, = - E,, - Ell Qi, 
ds a 

- = Qi, 
dB 
ds 

(53) 

(59) 

where 9’ = ~ 2 / k ~ l L 2  (62)  
is the eigenfrequency of the q = m = 1 linear internal-wave eigenmode. 

The rate of contraction of phase-space volumes is given by (Arnol’d 1978) 

-+-+-+-= - I+-+- a& a& ad,, a6 
a@ aEll aE,, a0 [ ‘,1 a1 
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7la 
FIGURE 1. Region of stability of the fixed point @ = E,, = E,, = 0 = 0. For 
M < Mo = y /a+aR/ (y+a)  the fixed point is stable. For M < M,, the fixed point bifurcates into 
a limit cycle. With our choice of parameters y = a and R = 1.0, so M ,  = 1.5. 

Since this is constant over state space, a volume V ( 0 )  becomes 

as ‘time’ goes by. 
These equations have one fixed point at @ = El, = E,, = 19 = 0. This corresponds 

to no motion of the velocity or energy-transfer fields and a constant value for the 
q = 2 ,  m = 0 piece of the density. The stability of this fixed point is governed by the 
eigenvalues of the linear stability matrix. If variations about the fixed point behave 
as esA, then stability is determined by the values of h satisfying 

V(s )  = V ( 0 )  exp [ - s( 1 + y / a  + y l /a ) ]  

where M = p 0 2 / a 2 .  (65) 

The root at h = -y’/a is always stable. If R y / a  > 0, there is always another 
negative real root. The other roots are complex conjugates and have zero real part 

(66) 
Y R  

when h = iu. This requires 
u2 = __ 

y + a ’  

and occurs when (67) 

When M > M,, the roots acquire a positive real part and the fixed point is unstable 
(see figure 1).  

The instability is of the classical Hopf-bifurcation variety (100s & Joseph 1981). 
It is possible to determine analytically whether the bifurcation is ‘normal ’, so a limit 
cycle grows smoothly out of the fixed point, or ‘inverted’, so an unstable limit cycle 
absorbs the newborn limit cycle and the whole set-up moves on to another behaviour. 
The numerical work soon to  be discussed shows that, at least in the region of the 
parameter space we have explored, a normal Hopf bifurcation occurs. 

Now we turn to  the numerical calculations we have carried out on the system 
(49)-(52). In  all the work we present here we choose y = y’ = a and R = 1.0. For 
other values of these parameters the qualitative features of the motion are the same. 
With these values the fixed point becomes unstable a t  M ,  = 8. I n  figure 2 we present 
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M = 1.53 
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-08L, 4 1 1  ( 1  I 1  e I I I I 1  8 1 

FIGURE 2 The evolution of the mode amplitude for 9000 iterations of the differential equations 
(59)-(62). M = 1.41 here, and amplitudes, which began at @ ( O )  = E,,(O) = E,,(O) = 1.0, $ ( O )  = 0.5, 
and R = 1 0, settle into their fixed-point values. 
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FIGURE 3. Same as figure 2 with M = 1.53. The fixed point has bifurcated into a limit cycle. 
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M = 2.558 1 
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(b  ) 

FIGURE 4. Same as figure 2 with M = 2.5581. In ( b )  is shown @ versus d5 for 
the last 7000 time steps. 
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M = 2.5615 
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FIQURE 5.  Same as figure 4 with M = 2.5615. 
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M = 3.0306 
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FIGURE 6. Same as figure 2 with M = 3.0306. 

the results of our calculations a t  M = 1.41. We show only @ ( t ) .  In  the time series for 
the amplitude we exhibit 9000 points generated by a fourth-order Runge-Kutta 
scheme with fixed time steps. Figure 3 contains the same information a t  M = 1.53. 
In  these and subsequent figures the initial values of our amplitudes were chosen to 
be @(O) = E,,(O) = E,,(O) = 1.0 and B(0) = 0.5. For a range of other values for these 
initial conditions we have verified that the same asymptotic state is achieved after 
an initial transient. 

For 1.5 < M < 2.5605 the limit cycle is the stable attractor. In  figure 4 we have 
the amplitude for M = 2.5581. In  figure 4(b) only the last 7000 points on the orbit 
are shown. The transients show the near stability of a new stable attractor, but in 
each case the orbit settles down to the limit cycle as before. Choosing different initial 
conditions changes the details of the transient behaviour; the attractor is the same. 
By M = 2.5615, as displayed in figure 5, we see that the new attractor has become 
stable. In  figure 5 (b) for 4 us. @ only the last 7000 points are displayed. The transition 
occurs a t  M z 2.56051 as we will discuss below. 

We move on now, and in figure 6 we display our data at M = 3.0306, where we 
see an initial transient from yet another attractor setting in. This turns out to be 
the precursor to further transitions in the structure of the attractor which occur very 
near M z 3.034063. 

In figure 7 we exhibit @ and dj versus @ for M = 3.03535. The non-periodic nature 
of the orbit is clear to. the eye. We have examined this orbit in more detail by 
computing lo4 and then 1.5 x lo4 points on the orbit. We show in figure 8 the last 
8500 points of 4 versus @ for lo4 iterations, and, in figure 9, the last 13500 points of 
dj versus @ for 1.5 x lo4 iterations. Special attention should be given to the structure 
which is clearly growing up a t  this M .  It is the projection of the non-periodic structure 
evolving in the four-dimensional phase space. We are going to refer to this as a strange 
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Same data as figure 4 with M = 3.03535, which has brought us to 
chaotic or non-periodic motion. 

the regime of 
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FIGURE 8. (a) @ ( t )  for 10000 iterations of (59)-(62) at M = 3.03535. (b) 4 versus q5 for the last 8500 
points in the orbit. Compare ( b )  with figure 7 ( d )  and 9(b) t o  see the development of the strange 
attractor as it appears projected into the (d, CP) plane. 
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FIGURE 9. Same as figure 8 with 15000 points of @ ( t )  in (a) and the last 
13500 points of 4 versus @ in (b). 
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FIGURE 10. Same as figure 4 with M = 3.0377. 
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FIQURE 1 1 .  For M = 1.5103 we display in ( a )  @ ( t )  for 18192 steps along the orbit. In  (b )  we plot 
log1 @(o)I, the Fourier transform of the last 213 = 8192 steps along the orbit. Only the first 500 bins 
in frequency are shown; this takes us in w up to w = 9. Beyond bin 500 is smooth noise. The 
bifurcation to a limit cycle occurs a t  a frequency of 44, which corresponds to bin 37 on this plot. 
That frequency and one harmonic are visible here. 



426 H .  D .  I .  Abarbanel 

7.0 
M = 2.56039 I: I 

6.0 

5 .O 

4.0 

3.0 

2,0 

1 .o 

0 

-1.0 

-2.0 

-3 .O 

1% I @ (w) I 

- 3.5 1 _ L 1 - ' - ~ - ~ - , _ L 1 _ , _ ' _ ' _ ' _ J - ' _ ' - ' _ ' - ' _ ' _ ' _ ' _ L I _ I _  

FIGURE 12. Same as figure 11 for M = 2.56039 for log(@(w)(. This is just below the value of M 
where the lim!t cycle becomes unstable. 

W 

attractor, though we have not verified that the curve occupies a non-integral volume. 
It is sufficient for our purposes that the behaviour is non-periodic. 

The final time series we display is for M = 3.0377 in figure 10. The orbit has 
returned to  a limit cycle. Indeed, for all M > 3.037 that  we have examined, only a 
limit cycle was observed. We have non-exhaustively searched up to M x 45. It is 
interesting to  note that the Lorenz equations (Lorenz 1963) derived from the BBnard 
convection problem also show a limit cycle for large Rayleigh number (Robbins 
1979) - the analogue of our M .  

Next we turn to the power spectra of the time series we have studied. Three issues 
are important here: ( 1 )  the frequency of the limit-cycle behaviour just as the fixed 
point has become unstable; (2) the appearance of new frequencies after bifurcation; 
and (3) the onset of broadband 'noise' when strange attraetors are present. 

We calculated our power spectra by solving the differential equations for 
N = 18192 = 104+213 equal time steps, At = 0.04. Then the last 213 points were 
Fourier-transformed, and a subset of the Fourier coefficients are displayed. 

At the onset of the limit cycle the frequency should be (yR/a+y) i  = d$ with our 
parameter choice. This should appear as a peak in the Fourier coefficient 
J = NAt/27c 4 2  = 37. I n  figure 1 1 ,  where M = 1.5103, we show the time series @(t )  
for N steps and the power spectrum log I @ ( w )  I. Indeed the spectrum consists of the 
frequency we expect, plus harmonics. 

Now when the limit cycle becomes unstable two 'generic' routes that can be taken 
are ( 1 )  a second Hopf bifurcation leading to  a second independent frequency or (2) 
a period-doubling bifurcation leading to a fundamental a t  half the frequency. In  figure 
12 we show logI@(w)( a t  M = 2.56039, which, as the orbit reveals, is very close to 
the bifurcation. The power spectrum consists of mode number J = 27 and its 
harmonics. Figure 13 contains the same data a t  M = 2.56051, where the fundamental 
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FIQURE 13. Same as figure 12 for M = 2.56051, which is just beyond the period doubling a t  
M = 2.56044. Note that the fundamental here is half of the fundamental in figure 12. 
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FIGURE 14. Same as figure 12 for M = 3.0172. 
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FIGURE 15. The power spectrum log I@(w)l for M = 3.03406, which is just before a second period 
doubling occurs. Only the first 100 bins out of 8192 are shown. 
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FIGURE 16. The power spectrum log I@(w)l for M = 3.03461, which is just beyond the second 
period doubling. Only the first 100 bins out of 8192 are shown. 
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FIGURE 17. Same as figure 16 for M = 3.034064. Another period doubling is visible. 
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FIGURE 18. The power spectrum logl@(o)l for M = 3.03535, which is in the chaotic regime. The 
broadband ‘noise’ is expected for the non-periodic behaviour on a strange attractor. 
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FIGURE 19. The power spectrum log(@(w)[ for M = 3.067, which is in the region M > 3.037 beyond 
which only a stable limit cycle is seen. 

lies a t  J = 12. A careful survey of the power spectra in this interval reveals the period 
doubling to occur around M = 2.56044. From here to  M = 3.034 we see in the power 
spectra only the new fundamental, which is a function o f M ,  and its harmonics. Figure 
14 a t  M = 3.0172 is typical. 

The next interesting occurrences are a t  M = 3.034. I n  figure 15 we have log)@(w)I 
for M = 3.034060, and figure 16 displays the same quantity for M = 3.034061. A 
second period doubling is now emerging. By M = 3.034064, shown in figure 17, yet 
another period doubling has occurred. Furthermore, we see at this point that the 
power spectrum has become ‘ broad’ in the sense that there is power in a very large 
number of lines. At this stage we are also pushing the resolution of our numerical 
calculations of @ ( w ) .  

Our last ‘data’ are a t  M = 3.03535 and M = 3.067. At the first value the plot in 
figure 18 of log1 @(a) 1 is the expected broadband ‘noise ’ characteristic of non-periodic 
motion on a strange attractor. At M = 3.067 we have once again the clean spectrum 
consistent with a simple limit cycle. 

4. Summary and outlook 
I n  this paper we have analysed an oceanic internal gravity-wave field driven by 

energy aources at the surface. Our motivation in this work is the physical idea that 
the universal spectrum of Garrett & Munk is a steady state of the system with energy 
injection at long wavelengths and viscous dissipation a t  short scales. Further we 
argued that the statistical appearance of internal-wave measurements arises because 
the asymptotic attractor of the system is non-periodic or a strange attractor. 

Our work in this note has concentrated on a specific model of driven internal-wave 
dynamics, and even then we have studied a truncatJed two-dimensional version of the 



Gniver,sality and strange attractors in internal-wave dynamics 43 1 

model for an ocean with constant buoyancy frequency. The truncation we used kept 
only hhe longest-wavelength modes and studied the nonlinear interaction among 
them. The numerical results reported in $ 3  show that, as a parameter which is 
proportional to the strength of forcing by the energy input mechanism is increased, 
the truncated system becomes unstable, develops a limit cycle via a normal Hopf 
bifurcation a,nd t>hen undergoes a sequence of period-doubling bifurcations to a 
strange attractor. 

In  the particular truncated model we analysed we found chaotic behaviour for a 
small parameter range, and, when the forcing became stronger yet, a regular limit cycle 
set in. The implication of this for oceanic internal waves is not that  non-periodic 
behaviour results from only a small range of forcing strengths aboae which regular 
motion will be observed. Rather one should view our numerical work as an indication 
of what will be the fate of the larger number of modes which come into play when 
the forcing is increased. So we expect that, as soon as the forcing is raised above a 
(small) critical value, many modes will undergo the route to turbulent behaviour we 
have seen for a few modes. 

Support for this view comes from the linear stability analysis of 92. Equation (29) 
gives t.he boundary of stability for our two-dimensional model. The critical forcing 
stre,ngt)h is proportional tJo viscosity (r, is dimensionless viscosity), as is the curvature 
of the critical ,uc,(q, fm) curve as a function of horizontal wavenumber nm/L near the 
minimum of the cixrve. This means that for small viscosity, which is the actual case, 
the pCc curve will have a broad minimum near p x small. For small forcing, then, a 
broad band of modes will suffer the instabilities and undergo the sequence of 
bifurcations we have found. By our eventual choice of parameters in the numerical 
work reported we have, in effect, set r, x 1 by working on a viscous timescale. Our 
work shows the way in which the strange attractor ‘unfolds’. 

Our model for the driven internnl-wave system introduced an  energy-transfer field 
E ( x , t ) ,  which was held fixed on the oceanic surface and was carried through the 
medivm by advection as well as being dissipated in the medium. An equally attractive 
model would add to the Navier-Stokes equation a body force F ( x ,  t )  2 which contains 
a few frequencies reflecting the timescale of energy input through the surface into 
the internal-wave motion and a few wavenumbers reflecting the spatial distribution 
of the energy input. Each model tries to  represent the surface driving of the oceanic 
internal gravit,y-wave field. Other sources of energy input (Thorpe 1975) can, of course, 
be modelled by additional distributed or localized forces. 

It is it premise of the argument in this paper that  the qualitative features of the 
chaotic or turbulent motion in the internal-wave system result from the presence of 
a st,range attractor and are rather independent of the detailed nature of the energy 
sources. This premise is the underpinning of the specific model we analysed here: a 
few-mode truncation of a two-dimensional ocean with a uniform buoyancy frequency. 

Our few-mode approximation keeps only the longest-wavelength degrees of 
freedom in the velocity, density and energy-transfer fields, It is perhaps surprising 
as well as grat,ifying that even in this severely truncated model we find stable limit 
cycles as well as chaot.ic, non-periodic attractors which act as if statistical. Details 
of the model aside -since clearly improvements of detail are called for-i t  does 
support our basic premise and invite extensive further investigation. 
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Appendix 
In this appendix we set up the three-dimensional version of our driven internal- 

wave-field model. Here we carry out and investigate certain features of the linear 
stability analysis. 

Begin with the fundamental equations (1)-(4) from $ 2 ,  In  three dimensions there 
are four independent fields. We choose them to be the vertical velocity u3(x, t ) ,  the 
vertical vorticity w3(x ,  t ) ,  the variation of density pl(x, t )  about the mean stratification 
p(x3), and the variation of energy transfer El(x, t )  about energy conduction. An 
equation for w3 comes from taking the curl of the momentum equation (1); our 
equation for u3 comes from curling again. Then we have 

au 
at ax3 

= vv4u3-cur1 (curl (u x o))3, 
at 

__- aw3 f 3 = v ~ w ,  + curl (u x o)3, 

-+u.Vp -Pon2 u3 > 
1-- 

aP1 
at 9 

EO - - -+U~VE,+-U~ at D = K V ~ E , ,  

where V, = (al, a,) is the horizontal gradient. 

ocean. These scalings are the same as in $ 2  with the addition 
We perform scalings on these equations which are appropriate to the constant-n 

( u 1 9  U3)+pnD(u1, u Z ,  u3), 

(%%, 0 3 )  + pn(w1, w2, w3) ,  

which replace the resealing of the stream function. 
After these rescalings we have 

a f aw3 - V2u3 + -~ + Vl(pl +El)  = fl V4u3 -p  curl curl (u x u ) ~ ,  
at n az 

-+pu*V p1 = u3, (R 1 
-+mmu*V E1+pu3 = f,V2E,. (A 10) 

C t  ) 
The linear stability of the trivial solution u3 = w3 = p1 = El = 0 is investigated by 

setting these fields equal to a single eigenmode of the linear system. With the 
boundaryconditionsu,=Oatz=O, - l ; a w , / a z = o a t z = O ,  l ; u , = O a t x =  + L ;  
and u, = 0 a t  y = + L we can express the eigenmodes in terms of sines and cosines. 
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Write 

(A 16) 
K 2  

where k ,  = rcq, k2, = L2 (mf + mi). 

The detailed discussion of (A 15) would lead us far astray, We choose instead to 
consider an instructive special case: rl = 0. 

If rl = 0, that means we are dealing with the inviscid limit of the internal-wave 
theory. One solution to (A 15) is h = 0; the other values of h satisfy 

If the last term is non-zero, then there is always one negative real root of (A 17). The 
other roots have negative real parts until p = 0. For p < 0 the asymptotic motion 
of the internal wave field is u, = w, = El = p1 = 0 ;  that is, the background state with 
no fluid motion. Whenp = 0 the system undergoes a Hopf bifurcation with frequency 

that is, the usual linear internal-wave frequency. The amplitude of the motion is 
proportional to pt. 

In this inviscid limit even the smallest forcing sets all modes q, m into motion. So 
a finite-mode approximation won’t do. The excitation of modes is then solely 
governed by the total energy available and is essentially independent of the nonlinear 
dynamics. The motion would be quasi-periodic. The spectrum would show peaks a t  
all modal values permitted by energy conservation rather than a broad background 
characteristic of ‘statistical ’ behaviour. 
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